Internal Validity, External Validity, Pitfalls
What You Should Learn

• Define the concept of “confounding”
• Explain how confounds threaten the internal validity of research, and recognize confounds in summaries of research.
• Define the “Campbell and Stanley” threats to internal validity.
• Explain the role of control groups in protecting internal validity.
• Explain various research design techniques to protect internal validity.
What you should learn (Cont.)

• Define the concept of “reactivity” as it applies to research settings, and describe the sources of reactivity.
• Explain measures that can be taken to control reactivity.
• Understand and control “demand characteristics.”
• Explain the effects of participant roles on research.
What you should learn (Cont.)

• Understand investigator effects that can lead to invalid research conclusions
• Explain Research Assistant effects that can lead to invalid research conclusions
• Understand concept of External Validity
Internal Validity: Definition

• Internal validity refers to the extent to which we can accurately state that the independent variable produced the observed effect.

• If
 – effect on dependant variable only due to variation in the independent variable(s)

• then
 – internal validity achieved
Example of the Issue

• Investigating effects of tutoring on grades
• Compare those who receive tutoring with those who do not receive tutoring
• Tutored students do better
 – brighter
 – receive more nonspecific attention
 – don’t stay out late
• Internal validity is questionable
Confounding

- Extraneous variable
 - any variable other than IV that influences DV
- Confounding
 - occurs when an extraneous variable systematically varies with variation in IV
 - the extraneous variable affects the DV
 - plausible alternative explanation
 - tutoring and intelligence vs. birth order
Controlling Extraneous Variables

• Can eliminate some extraneous variables
• Most must be controlled
• Example: CVC and learning method
 – control for word association
• Difficulty lies in identifying the variables
Variables We Know That Must Be Controlled

• History
• Maturation
• Testing
• Instrumentation
• Statistical Regression
• Selection
• Mortality
• See Cook and Campbell (1979) for others
History

- An extraneous variable occurring between pre- and post-measurement of the DV
- Refers to specific events, other than IV
- Example: Attitude-change study
 - measure attitude toward gun control
 - attitude change manipulations
 - Shooting occurs at two office buildings, 27 people die
 - measure attitude toward gun control
History: Another Example

- Dietary change on violence in institutionalized juveniles
- New group of inmates
- Record behaviors for three months
- Change diet
- Record behaviors for three months
- Violence declines after diet change
Maturation

• Changes in biological and psychological conditions that occur with passage of time
• Refers to the internal changes of individual that occur due to passage of time
• Consider: Retention of learning and effects of age on retention
 – First assess performance after 6 continuous hours of practice
 – Test performance one month later
• What was “discovered”
Maturation Example

Percent Correct

Training Retention

Young Old
Maturation Again

- Testing benefits of Head Start Program
- Pretest to establish “ability” of slow learners
- Set up special room to motivate these kids
- One year later retested same kids
- Found 1.75 years improvement for the 1.0 year in the program.
- Fame and fortune awaited the researchers…..
Testing

• Repeated measurement on the same variable leads to improved performance because of
 – learning
 – practice
 • general learning
 • specific learning
 – conjecture about the research

• What are examples?
Instrumentation

- Changes that occur due to changes in the assessment of the DV
- Does not refer to participant changes
- Refers to the changes that occur during process of measurement
- Changes in researcher
 - becoming more skilled, or tired
- Changes in the instrument itself
Statistical Regression

• The lowering of extreme high scores and the raising of extreme low scores
• Change scores problematic for many reasons, this is one
• Does not mean people “regress toward mediocrity” but the statistical effect of regression toward mean can cause interpretation problems
Illustration of Statistical Regression Effect

<table>
<thead>
<tr>
<th>Participant Pretest</th>
<th>Selected Participant Pretest</th>
<th>Posttest</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 110</td>
<td>S1 110</td>
<td>103</td>
</tr>
<tr>
<td>S2 46</td>
<td>S3 123</td>
<td>116</td>
</tr>
<tr>
<td>S3 123</td>
<td>S8 105</td>
<td>98</td>
</tr>
<tr>
<td>S4 92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S5 59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S6 73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S7 99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S8 105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9 67</td>
<td>S2 46</td>
<td>57</td>
</tr>
<tr>
<td>S10 84</td>
<td>S5 59</td>
<td>63</td>
</tr>
<tr>
<td>S11 61</td>
<td>S9 67</td>
<td>70</td>
</tr>
<tr>
<td>S12 96</td>
<td>S11 61</td>
<td>65</td>
</tr>
</tbody>
</table>
How Can Regression to Mean Lead to Interpretation Problems?

• Score high on first exam, score less well, on average, on final exam
• Score low of first exam, score better, on average, on final exam
• Interpretation:
 – The instructor brings everyone to average
 – The instructor can only teach gifted students
 – And so on…..
Selection

• The choice of participants for the various treatment groups is made on the basis of different criteria

• Ideally sample is randomly chosen from a population then randomly assigned to treatment groups

• If not, rival hypotheses are introduced

• Example:
 – “Morning” group and “Evening” group
Selection

Percent Facts Recalled

No Training

Training
Selection

Percent Facts Recalled

No Training Training
Mortality

• A differential loss of participants from the various treatment groups in the study

• Problem is not just loss but differential loss such that differences may be due to who is left not treatment

• Examples:
 – training method and retention
 – Longitudinal studies and effects of age
 • “only the strong survive”?
Conclusion: Threats to Internal Validity

• The threats we covered are not exhaustive
• Internal validity may be threatened from multiple sources
• Your job as scientist:
 – ensure alternative explanations can be ruled out
• Checklist approach not really possible
• You must think
External Validity

• What is external validity?
• Relates to generalizing your findings
 – to or across target populations
 – to or across tasks
 – to or across environments
• Campbell and Stanely: “the ability to generalize to or across exemplars of a particular to the entire class of a particular”
List of Some Threats to External Validity

• This list not exhaustive
• This list not meant to serve as a checklist
• This list should stimulate your thinking when you are concerned with generalizations
 – of your own work
 – of the work of others
Examples of Threats

• Treatment-Attribute Interaction
• Treatment-Setting Interaction
• Multiple-Treatment Interference
• Pretest Sensitization
• Post-test Sensitization
From Mead & Fisk, 1999 Age Related Training Study
Examples of Threats

- Treatment-Attribute Interaction
- Treatment-Setting Interaction
- Multiple-Treatment Interference
- Pretest Sensitization
- Post-test Sensitization
Summary Internal/External Validity

• What is Internal Validity?
• Internal Validity Threats
 – History
 – Maturation
 – Testing
 – Instrumentation
 – Statistical Regression
 – Selection
 – Mortality

• What is External Validity?
• External Validity Threats
 – Treatment-Attribute Interaction
 – Treatment-Setting Interaction
 – Multiple-Treatment Interference
 – Pretest Sensitization
 – Post-test Sensitization
Artifacts and Pitfalls

• Still concerned with Internal Validity
• Focus now on issues emanating from different aspect of research process:
 – the Participant
 – the Research Assistant
 – the Principal Investigator
• Why focus on what might go wrong?
Participant Effects

- Perfect participant exists in our dreams
- Participants come to study with
 - expectations, biases, personalities, etc.
- Type of participants
 - the good, the faithful, the negativistic, the apprehensive
Participant Effects: What to Do

• Be aware that these various kinds of participants exist.
• Give no cues that lead to a particular kind of behavior
• If you find an exaggerated type of participant
 – keep notes in your study log book
 – you may wish to exclude prior to looking at that participant’s data
Research Assistant and Investigator Effects

• Discuss 10 pivotal points

• Two main questions
 – At what point in the research process can study go astray giving misleading results
 – What steps can be taken to avoid pitfalls
Define Investigator and Research Assistant

• Can be same person, usually not

• Investigator
 – decides study is to be conducted
 – how it is designed and carried out
 – how data analyzed and interpreted

• Research Assistant
 – conducts study
 – tests participants
 – records, enters data
The Major Pitfalls: Investigator Effects

- Investigator Paradigm Effect
- Investigator Research-Study Design Effect
- Investigator Loose Procedure Effect
- Investigator Data Analysis Effect
- Investigator Fudging Effect
The Major Pitfalls: Research Assistant Effects

- RA Personal Attributes Effects
- RA Failure to Follow Procedure Effects
- RA Incorrect Recording Effect
- RA Fudging Effect
- RA Unintentional Expectancy Effect
Investigator Paradigm Effect

- What is a paradigm and why important
- When do problems arise
 - results inharmonious with accepted paradigm view as not acceptable
 - Example
- Recommendations
 - be aware of assumption
 - be aware of pitfall of “proving” theory
 - thoroughly test multiple alternative hypotheses
 - “studying hypotheses”
 - Not “substantiating theories”
Investigator Research-Study Design Effect

• Same paradigm, similar theory
• Different results because of design
• Examples
 – complexity of design
 – within vs. between
• Recommendations
 – need to place emphasis on fact that results are dependant on way study is designed
Investigator Loose Procedure Effect

• Degree of imprecision of study protocol
• Recommendations
 – provide precise specifications as to how study is to be conducted
 – plan for contingencies to ensure everyone treated same
 – standardize things like
 • how to greet each participant
 • what to do if participant interrupts procedure
Investigator Data Analysis Effect

• Investigator has control of and responsibility for data analysis
• Seven types of data analysis problems
 – No preplanning
 – Failing to report non-supporting data
 – Inappropriate post-mortem analyses
 – Not correcting for multiple analyses
 – Selective reporting of significant results
 – Not reporting failures to replicate
 – Checking only non-confirming analyses
Investigator Data Analysis Effect

• Recommendations for improvement
 – If not planned comparisons report all data
 – Do not change alpha level in “mid-analysis”
 – Substantiate post-mortem tests by further research
 – Avoid “probability pyramiding”
 – Plan study with manageable number of IV/DV
Investigator Fudging Effect

- For sake of completeness we will discuss
- Occurs when reported results are not actual results
- Not just outright faking but also
 - “pushing the data”
 - selectively discarding
 - changing a p value from .07 to .05
 - selectively trimming data
- Even if person just suspected, treated as pariah
RA Personal Attributes Effect

• Attribute of research assistant (e.g., gender or ethnicity) can affect participants’ responses on specific study task.

• But complex effects for
 – whether attribute of RA affects responses on wide variety of task
 – whether multiple attributes add or interact

• Recommendation
 – realize effect is real, design for internal and external validity
RA Failure to Follow Procedure Effect

- If RA deviates meaningfully from established procedure then the published study is misleading. It is not the study that was actually conducted.
- RA can vary in way they conduct study
- Within an RA they may test different participants differently
- Recommendation
 - design for internal and external validity
RA Incorrect Recording Effect

• Failing to correctly record participants’ responses
 – random error or systematic error

• Where:
 – recording answers to ability tests given one on one
 – recording events during usability testing
 – scoring and entering data

• Why
 – not careful
 – desire to “meet expectations”
RA Fudging Effect

• Not too difficult to document
• When most likely to happen
 – “hired-hand” RAs
 – “piece rate” workers
 – not engaged in research effort
RA Unintentional Expectancy Effect

• Do expectations and desires lead to unconscious, unintentional effects?
• Perhaps in ways such as tone of voice, posture, facial expressions, etc.
• But most studies fail to show this effect if other factors controlled
• When interpretation required and criteria ambiguous, problem can arise
General Review of Section